收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » (三)PCB设计:“电源加磁珠”介绍 | 壹芯微

(三)PCB设计:“电源加磁珠”介绍 | 壹芯微

返回列表来源:壹芯微 发布日期 2022-09-08 浏览:-

承前:讨论滤波电容的位置与PDN阻抗的关系,提出“全局电容”与“局部电容”的概念。能看到当电容呈现“全局特性”的时候,电容的位置其实没有想象中那么重要。

本节:多层板设计的时候,电容倾向于呈现“全局特性”,“电源加磁珠”的设计方法,会影响电容在全局范围内起作用。同时电源种类太多,还会带来其他设计问题。

通过上一篇文章,我们知道电容在不同的使用条件,会呈现“全局特性”与“局部特性”。

避免研究公式的繁琐,我们来看看实际仿真结果。为了便于研究,设计了一个仿真案例,如图1所示:Case1是电容放在芯片管脚附近,Case1b是电容远离芯片管脚放置。这时候Case1b比Case1多出一对电源地过孔,为了同等条件下只比较电容的位置影响,我们增加Case1a案例,在和Case1b电容Fan out同样的位置上增加一对电源地过孔。
11.jpg
12.jpg

图1

图1的4、5两层为电源地耦合的平面。先来看看电源地距离为3mil时的情况:当电源地紧耦合时,a和b两个Case的PDN曲线基本重合,说明电容的谐振频率没有变化。也就是说,电容位置好像几乎没有任何影响,反而是Case1的谐振频率偏向于低频,说明Case1的安装电感反而更大一些。这个容易理解,主要是多出来的一对电源地过孔导致的。
13.jpg

图2

电源地距离在10mil以内时,以上结论都类似。但是当电源地距离在20mil甚至50mil时,情况稍有变化。如图3所示,电源地距离变大时,a和b两个Case的PDN曲线开始偏离,Case1b的谐振频率向低频偏移,说明电容远离芯片管脚的时候,电容的安装电感明显变大。
14.jpg
15.jpg

图3

所以,我们可以得出简单的结论:

典型的8层以上单板,或者6层板采用3个电源地平面,电源地相对紧耦合的设计,这时候板上的滤波电容呈现“全局特性”,也就是说电容的位置不是很“重要”,电容在全局起作用。双面板四层板,以及6层板电源地距离比较远,相对松耦合的时候,板上的滤波电容倾向于“局部特性”,电容的位置比较重要,最好能靠近芯片管脚放置。

当电源供电网络不使用电源地平面来设计的时候,电容更倾向于“局部特性”。如PLL电源的电容,如DDR3设计中Vref电源的电容,都希望严格把相应的电容靠近芯片的管脚,甚至最好能做到设计时指定电源必须从滤波电容进入芯片管脚。

同样的,对于常规数字电源,如3.3V,2.5V等IO电源,如果我们对每一个芯片都使用磁珠隔离之后单独供电,那么电容就失去了“全局”作用。最直接的一个负面作用就是导致设计需要增加更多的滤波电容。或者某个芯片的电容数量与种类不够,导致电源轨道噪声变大。

就算是电容的数量不是问题,电源噪声可控,“滥用”磁珠还会造成其他设计问题。图4中的方案三是现在非常流行的12层板层叠设计。大家选择这样的层叠最主要的原因就是电源的分割太破碎,这样的电源层如果作为参考平面的话,会比较难避免“跨分割”问题(单面跨电源分割问题,我们会另外有专题讨论)。方案三的层叠避免了电源分割多的问题,却带来更加恶劣的层间串扰等其他问题。

电源种类多是设计的现状,“滥用”磁珠会“雪上加霜”的让电源种类更多。加大电源地平面设计的难度。而增加的磁珠,其实并没有给电源噪声带来好处。
16.jpg

图4

总结:常规的数字电源,在采用多层板设计,电源地平面紧耦合的情况下,不建议“滥用”磁珠,保持电容的“全局”特性起作用。

壹芯微科技专注于“二,三极管、MOS(场效应管)、桥堆”研发、生产与销售,20年行业经验,拥有先进全自动化双轨封装生产线、高速检测设备等,研发技术、芯片源自台湾,专业生产流程管理及工程团队,保障所生产每一批物料质量稳定和更长久的使用寿命,实现高度自动化生产,大幅降低人工成本,促进更好的性价比优势!选择壹芯微,还可为客户提供参数选型替代,送样测试,技术支持,售后服务等,如需了解更多详情或最新报价,欢迎咨询官网在线客服!

手机号/微信:13534146615

QQ:2881579535

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号