三极管的开关速度如何提高
三极管定义
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
三极管参数
特征频率fT:
当f= fT时,三极管完全失去电流放大功能。如果工作频率大于fT,电路将不正常工作.fT称作增益带宽积,即fT=βfo。若已知当前三极管的工作频率fo以及高频电流放大倍数,便可得出特征频率fT。随着工作频率的升高,放大倍数会下降.fT也可以定义为β=1时的频率.
电压/电流
用这个参数可以指定该管的电压电流使用范围。
hFE
电流放大倍数。
VCEO
集电极发射极反向击穿电压,表示临界饱和时的饱和电压。
PCM
最大允许耗散功率。
封装形式指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。
三极管结构与原理:
三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。
图1 pnp(a)与npn(b)三极管的结构示意图与电路符号
三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward acTIve),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形下,电洞和电子的电位能的分布图。
三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电洞复合,即InB? E=IErec。pnp三极管在正向活性区时主要的电流种类可以清楚地在图3(a)中看出。
图2 (a)一pnp三极管偏压在正向活性区;(b)没外加偏压,和偏压在正向活性区两种情形下,电洞和电子的电位能的分布图比较。
图3 (a) pnp三极管在正向活性区时主要的电流种类;(b)电洞电位能分布及注入的情形;(c)电子的电位能分布及注入的情形。
一般三极管设计时,射极的掺杂浓度较基极的高许多,如此由射极注入基极 的射极主要载体电洞(也就是基极的少数载体)IpE? B电流会比由基极注入射极 的载体电子电流InB? E大很多,三极管的效益比较高。图3(b)和(c)个别画出电洞 和电子的电位能分布及载体注入的情形。同时如果基极中性区的宽度WB愈窄, 电洞通过基极的时间愈短,被多数载体电子复合的机率愈低,到达集电极的有效电 洞流IpE? C愈大,基极必须提供的复合电子流也降低,三极管的效益也就愈高。 集电极的掺杂通常最低,如此可增大CB极的崩溃电压,并减小BC间反向偏压的 pn接面的反向饱和电流,这里我们忽略这个反向饱和电流。 由图4(a),我们可以把各种电流的关系写下来: 射极电流 基极电流 集电极电流。
晶体管的开关速度即由其开关时间来表征,开关时间越短,开关速度就越快。BJT的开关过程包含有开启和关断两个过程,相应地就有开启时间ton和关断时间toff,晶体管的总开关时间就是ton与toff之和。
如何提高晶体管的开关速度?——可以从器件设计和使用技术两个方面来加以考虑。
(1)晶体管的开关时间
晶体管的开关波形如图1所示。其中开启过程又分为延迟和上升两个过程,关断过程又分为存储和下降两个过程,则晶体管总的开关时间共有4个:延迟时间td,上升时间tr,存储时间ts和下降时间tf;
ton=td+tr, toff=ts+tf
在不考虑晶体管的管壳电容、布线电容等所引起的附加电容的影响时,晶体管的开关时间就主要决定于其本身的结构、材料和使用条件。
如何提高三极管的开关速度?
① 延迟时间td :
延迟时间主要是对发射结和集电结势垒电容充电的时间常数。因此,减短延迟时间的主要措施,从器件设计来说,有如:减小发射结和集电结的面积(以减小势垒电容)和减小基极反向偏压的大小(以使得发射结能够尽快能进入正偏而开启晶体管);而从晶体管使用来说,可以增大输入基极电流脉冲的幅度,以加快对结电容的充电速度(但如果该基极电流太大,则将使晶体管在导通后的饱和深度增加,这反而又会增长存储时间,所以需要适当选取)。
② 上升时间tr :
上升导通时间是基区少子电荷积累到一定程度、导致晶体管达到临界饱和(即使集电结0偏)时所需要的时间。因此,减短上升时间的主要措施,从器件设计来说有如:增长基区的少子寿命(以使少子积累加快),减小基区宽度和减小结面积(以减小临界饱和时的基区少子电荷量),以及提高晶体管的特征频率fT(以在基区尽快建立起一定的少子浓度梯度,使集电极电流达到饱和);而从晶体管使用来说,可以增大基极输入电流脉冲的幅度,以加快向基区注入少子的速度(但基极电流也不能过大,否则将使存储时间延长)。
③ 存储时间ts :
存储时间就是晶体管从过饱和状态(集电结正偏的状态)退出到临界饱和状态(集电结0偏的状态)所需要的时间,也就是基区和集电区中的过量存储电荷消失的时间;。而这些过量少子存储电荷的消失主要是依靠复合作用来完成,所以从器件设计来说,减短存储时间的主要措施有如:在集电区掺Au等来减短集电区的少子寿命(以减少集电区的过量存储电荷和加速过量存储电荷的消失;但是基区少子寿命不能减得太短,否则会影响到电流放大系数),尽可能减小外延层厚度(以减少集电区的过量存储电荷)。而从晶体管使用来说,减短存储时间的主要措施有如:基极输入电流脉冲的幅度不要过大(以避免晶体管饱和太深,使得过量存储电荷减少),增大基极抽取电流(以加快过量存储电荷的消失速度)。
④ 下降时间tf :
下降时间的过程与上升时间的过程恰巧相反,即是让临界饱和时基区中的存储电荷逐渐消失的一种过程。因此,为了减短下降时间,就应该减少存储电荷(减小结面积、减小基区宽度)和加大基极抽取电流。
总之,为了减短晶体管的开关时间、提高开关速度,除了在器件设计上加以考虑之外,在晶体管使用上也可以作如下的考虑:a)增大基极驱动电流,可以减短延迟时间和上升时间,但使存储时间有所增加;b)增大基极抽取电流,可以减短存储时间和下降时间。
图2
(2)晶体管的增速电容器
在BJT采用电压驱动时,虽然减小基极外接电阻和增大基极反向电压,可以增大抽取电流,这对于缩短存储时间和下降时间都有一定的好处。但是,若基极外接电阻太小,则会增大输入电流脉冲的幅度,将使器件的饱和程度加深而反而导致存储时间延长;若基极反向电压太大,又会使发射结反偏严重而增加延迟时间,所以需要全面地进行折中考虑。可以想见,为了通过增大基极驱动电流来减短延迟时间和上升时间的同时、又不要增长存储时间和产生其它的副作用,理想的基极输入电流波形应该是如图2所示阶梯波的形式,这样的阶梯波输入即可克服上述矛盾,能够达到提高开关速度的目的。
实际上,为了实现理想的基极电流波形,可以方便地采用如图3所示的基极输入回路(微分电路),图中与基极电阻RB并联的CB就称为增速电容器。在基极输入回路中增加一个增速电容器之后,虽然输入的电流波形仍然是方波,但是通过增速电容器的作用之后,所得到的实际基极输入电流波形就变得很接近于理想的基极电流波形了,于是就可以减短开关时间、提高开关速度。
壹芯微科技针对二三极管,MOS管作出了良好的性能测试,应用各大领域,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍
工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615
企业QQ:2881579535
深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号