收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » 如何才能确认三极管的工作状态

如何才能确认三极管的工作状态

返回列表来源:壹芯微 发布日期 2021-03-04 浏览:-

如何才能确认三极管的工作状态

三极管有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。

一、三种工作状态的特点

1.三极管饱和状态下的特点

要使三极管处于饱和状态,必须基极电流足够大,即IB≥IBS。三极管在饱和时,集电极与发射极间的饱和电压(UCES)很小,根据三极管输出电压与输出电流关系式UCE=EC-ICRC,所以IBS=ICS/β=EC-UCES/β≈EC/βRC。三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBES=0.7V(锗管UBES=-0.3V),而UCES=0.3V,可见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。三极管饱和后,C、E 间的饱和电阻RCE=UCES/ICS,UCES 很小,ICS 最大,故饱和电阻RCES很小。所以说三极管饱和后G、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。

2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流IB=0,此时集电极IC=ICEO≈0(ICEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。

三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈ECO 可见,UBE≤0,UBC<0,也就是说,发射结和集电结均为反偏。三极管截止后,C、E 间的截止电阻RCE=UCE/IC,UCES 很大,等于电源电压,ICS 极小,C、E 间电阻RCE 很大,所以,三极管截止后C、E 间视为开路,截止状态的NPN 型三极管等效电路如图1b。

3.三极管放大状态下的特点

要使三极管处于放大状态,基极电流必须为:00,对硅管来说,发射结的压降UBE=0.7V(锗管UBE=-0.3V),三极管在放大状态时,集电极与发射极间的电压UCE>1V 以上,UBE>0,UBC<0,也就是说,发射结正偏,集电结反偏。三极管在放大状态时,IB 与IC 成唯一对应关系。当IB 增大时,IC 也增大,并且1B 增大一倍,IC 也增大一倍。所以,IC 主要受IB 控制而变化,且IC 的变化比IB 的变化大得多,即集电极电IC=β×IB。

三极管三种工作状态的特点如附表所示。

二、确定电路中三极管的工作状态

下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2 所示放大电路中,已知EC=12V,β=50,Ri=1kΩ,Rb=220kΩ,Rc=2kΩ,其中Ri 为输入耦合电容在该位置的等效阻抗。问:1.当输入信号最大值为+730mV,最小值为-730mV 时,能否经该电路顺利放大?2.当β=150 时,该电路能否起到正常放大作用?

分析:当向三极管的基极输入正极性信号时,其基极电流会增大,容易进入饱和状态;当向三极管的基极输入负极性信号时,其基极电流会减小,容易进入截止状态。因此,解决输入信号送入放大电路能否顺利放大,主要是检查最大值(一般为正极性)的输入信号、最小值(一般为负极性)的输入信号是否引起放大电路中三极管进入了饱和状态、截止状态,如果两种输入信号都没有使三极管进入饱和、截止状态,那么该范围的输入信号送入放大电路后能被顺利放大。如果两种输入信号使三极管进入饱和或截止状态,则不能顺利放大,会引起信号饱和失真或截止失真。

解1:

(1)当最大值信号(Ui=+730mV)输入时,假设会引起放大电路的三极管进入饱和状态,

IB=I1+I2,利用戴维南定律,IB=(Ui-Ubss)/Ri+(Ec-Ubss)/Rb。

在饱和状态下的三极管Ubss=0.7V,所以,三极管基极电流IB=(0.73-0.7)/1000+(120.7)/220000=30μ4+51.4μA=81.4μA,而三极管基极临界饱和电流IBS=ICS/β=(EC-UCES)/β×RC,根据饱和状态下的三极管UCES=0.3V,所以,IBS=(12-0.3)/(50×2000)=117μA。

根据以上计算可知:IB大值输入信号(Ui=+730mV)输入时,放大电路的三极管仍处于放大状态。(2)当最小值输入信号(Ui=-730mV)输入时,假设会引起放大电路的三极管进入截止状态,则等效电路如图4 所示。

-Ec+IRc+IRi+Ui=0,所以,I=(Ec-Ui)/(Rc+Ri)=[12-(-0.73)]/(1000+220000)=58μA,

Uba=-IRb+Ec=-58μA×220000+12V=-0.76V。

可知:Ube<0,根据三极管截止状态的条件UBE≤0,假设成立,即当最小值输入信号(Ui=-730mV)输入时,放大电路的三极管处于截止状态。综上所述,当最大值为730mV,最小值为-730mV 的输入信号输入时,该放大电路不能顺利放大。

解2:当β=150 时,三极管基极临界饱和电流IBS=ICS/β=(EC-UCES)/βRC=(12-

0.3)/(150×2000)=39μA,而三极管的基极电流IB=(EC-UBEQ)/Rb=(12-0.7)/220000=51μA。

根据以上计算可知:IB>IBS,根据三极管饱和状态的条件IB≥IBS,可知,电路中的三极管处

于饱和状态,即该电路不能起到正常放大作用。

三极管

壹芯微科技针对二三极管,MOS管作出了良好的性能测试,应用各大领域,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号