MOS管应用电路以及经典电路分析
MOS管应用电路
MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。现在的MOS驱动,有几个特别的需求。
1,MOS管应用电路:低压应用
当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。同样的问题也发生在使用3V或者其他低压电源的场合。
2,MOS管应用电路:宽电压应用
输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。
3,双电压应用
在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。两个电压采用共地方式连接。这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题。在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。有一个相对通用的电路满足这三种需求。
mos管电路经典分析
问题:此电路为什么会烧坏Mos管?
此电路是一个非常经典的小电流MOS管驱动电路,但LZ将之移到大电流应用上,水土不服,出了点小问题。
1.烧MOS管不是由于Q41没有饱和所致,而是由于驱动电流不足,驱动大功率MOS管时(由于其栅极电容的存在),无法快速对其栅极电容充电,引起栅极电压上升缓慢,切换功耗大大增大,引起烧MOS管。
2.D41不能省,一般MOS管的栅极极限电压为15-16V,此稳压管起保护MOS管作用,防止过高电压(本电路去掉R42时可高达+30V?!)对MOS管的栅极冲击引起击穿损坏。
3.R42不能省,起到限制光耦最大输出电流,及对IN4744A的限流作用。由于光耦的最大输出电流一般较小,过份减小R42加大光耦输出电流,易引起光耦加速老化及损坏,因此,比较好的方法是在光耦输出端用NPN三极管加一级射极跟随器,放大输出驱动电流。另外,可在R45上并联一只几十至百皮皮法的小电容,起加速MOS管的饱和。
4.R43不能大幅增加,一般加大到10K为上限,其原因在于,当MOS管关断时,储存一定驱动电压的栅极电容通过R43放电,最终将MOS管关断,如R43太大,MOS管关断时间增加,关断速度减慢,引起关断时的切换功耗大大增大,引起烧MOS管。当然,最好的方法是在栅极加负压,加速MOS管关断,但这样成本会高些。
壹芯微科技针对二三极管,MOS管作出了良好的性能测试,应用各大领域,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍
工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615
企业QQ:2881579535
深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号