收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » MOS管的极和沟道如何区分解析

MOS管的极和沟道如何区分解析

返回列表来源:壹芯微 发布日期 2023-07-19 浏览:-

MOS管的极和沟道如何区分解析

绝缘栅型场效应管中,目前常用二氧化硅作金属铝栅极和半导体之间的绝缘层,称为金属一氧化物-半导体场效应晶体管,简称为MOSFET或者MOS管。
31.jpg

MOS管的电路符号

1)G、D、S极怎么区分?

G极是比较好区分的,大家一眼就能区分。

不论是P沟道还是N沟道,两根线相交的就是S极。

不论是P沟道还是N沟道,单独引线的那边就是D极。
32.jpg

2)N、P沟道如何区分?

箭头指向G极的就是N沟道。

箭头背向G极的就是P沟道。
33.jpg

3)寄生二极管方向

N沟道,由S极指向D极。

P沟道,由D极指向S极。
34.jpg

MOS管导通条件

N沟道:Ug》Us时导通。(简单认为)Ug=Us时截止。

P沟道:Ug《Us时导通。(简单认为)Ug=Us时截止。
45.png

注意一点,MOS管做开关器件的时候,输入输出一定不能接反,接反的寄生二极管一直处于导通状态,MOS本身就失去开关的作用了。

万用表区分N/P沟道

将万用表调至“二极管档”。
46.png

红表笔(+极)接D极,黑表笔(-极)接S极:假设,二极体值低于0.7V以下。然后我们交换表笔,黑表笔(-极)接D极,红表笔(+极)接S极:假设,二极体值高于1.2V以上。那么我们可以判断,这个为?PMOS。如果两次测量结果和我们的假设相反,则可以判断为?NMOS。
47.png

整理一下上面描述区分P、N沟道方法的逻辑,DS极之间的寄生二极管才是关键。换句话说,我们就是依靠测量这个寄生二极管的导通方向来判断P、N沟道的。

MOS管内部工作原理

在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N区,并用金属铝引出两个电极,分别作为漏极D和源极S。然后在漏极和源极之间的P型半导体表面覆盖一层很薄的二氧化硅(Si02)绝缘层膜,再在这个绝缘层膜上装上一个铝电极,作为栅极G。这就构成了一个N沟道增强型MOS管。显然它的栅极和其它电极间是绝缘的。
38.gif

同样用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P区,及上述相同的栅极制作过程,就制成为一个P沟道增强型MOS管。

增强型MOS管的漏极D和源极S之间有两个背靠背的PN结。当栅-源电压VGS=0时,即使加上漏-源电压VDS,总有一个PN结处于反偏状态,漏-源极间没有导电沟道(没有电流流过),所以这时漏极电流ID=0。此时若在栅-源极间加上正向电压,即VGS>0,则栅极和硅衬底之间的SiO2绝缘层中便产生一个栅极指向P型硅衬底的电场。由于氧化物层是绝缘的,栅极所加电压VGS无法形成电流,氧化物层的两边就形成了一个电容,VGS等效是对这个电容充电,并形成一个电场。

随着VGS逐渐升高,受栅极正电压的吸引,在这个电容的另一边就聚集大量的电子并形成了一个从漏极到源极的N型导电沟道,当VGS大于管子的开启电压VT(一般约为 2V)时,N沟道管开始导通,形成漏极电流ID。

我们把开始形成沟道时的栅-源极电压称为开启电压,一般用VT表示。控制栅极电压VGS的大小改变了电场的强弱,就可以达到控制漏极电流ID的大小的目的,这也是MOS管用电场来控制电流的一个重要特点,所以也称之为场效应管。

MOS管分类

MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。
39.jpg

壹芯微科技专注于“二,三极管、MOS(场效应管)、桥堆”研发、生产与销售,21年行业经验,拥有先进全自动化双轨封装生产线、高速检测设备等,研发技术、芯片源自台湾,专业生产流程管理及工程团队,保障所生产每一批物料质量稳定和更长久的使用寿命,实现高度自动化生产,大幅降低人工成本,促进更好的性价比优势!选择壹芯微,还可为客户提供参数选型替代,送样测试,技术支持,售后服务等,如需了解更多详情或最新报价,欢迎咨询官网在线客服!

手机号/微信:13534146615

QQ:2881579535

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号