收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » 基于三极管做开关的电容作用介绍

基于三极管做开关的电容作用介绍

返回列表来源:壹芯微 发布日期 2023-03-21 浏览:-

基于三极管做开关的电容作用介绍

1、开关三极管的基本电路图

负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上,输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。

详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃工作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃工作于饱和区(saturation)。

关于晶体三极管的开关饱和区,MOS管的饱和区就是晶体管的放大区。

晶体三极管的放大是电流关系的放大,即Ic=B*Ib

而MOS管的放大倍数是Ic=B*Ugs,与g、s两端的电压有关系

MOS管的放大倍数比较大,稳定。

31.jpg

32.jpg

33.jpg

34.jpg

2.基极电阻的选取

(1)首先判断三极管的工作状态,是放大区(增大驱动电流)还是饱和区(开关作用)

(2)若工作在放大区,根据集电极负载的参数,计算出集电极的电流,之后根据三级管的放大特性计算出基极电流,再根据电流值计算出电阻。

(3)若工作在饱和区,

以NPN管为例大致计算一下典型3元件开关电路的选值:

设晶体管的直流放大系数为100,Ib=(驱动电压-0.7Vbe结压降)/Rb,Vce=Vcc-100Ib×Rc,令Vce=0,由此可算出临界值(饱和区与放大区的临界),只要Rb小于临界值即可,但其最小值受器件Ib容限限制,切勿超过。

3.补偿电容电路图

一般线性工作的放大器(即引入负反馈的放大电路)的输入寄生电容Cs会影响电路的稳定性,其补偿措施见图。放大器的输入端一般存在约几皮法的寄生电容Cs,其频带的上限频率约为:

ωh=1/(2πRfCs)

为了保持放大电路的电压放大倍数较高,更通用的方法是在Rf上并接一个补偿电容Cf,使RinCf网络与RfCs网络构成相位补偿。RinCf将引起输出电压相位超前,由于不能准确知道Cs的值,所以相位超前量与滞后量不可能得到完全补偿,一般是采用可变电容Cf,用实验和调整Cf的方法使附加相移最小。若Rf=10kΩ,Cf的典型值丝边3~10pF。对于电压跟随器而言,其Cf值可以稍大一些。
35.jpg

3.运放电源旁路电容

旁路是把前级或电源携带的高频杂波或信号滤除,去藕是为保证输出端的稳定输出

每个集成运放的电源引线,一般都应采用去偶旁路措施,如图所示图中的高频旁路电容,通常可选用高频性能优良的陶瓷电容,其值约为0.1μF。或采用lμF的钽电容。这些电容的内电感值都较小。在运放的高速应用时,旁路电容C1和C2应接到集成运放的电源引脚上,引线尽量短,这样可以形成低电感接地回路。
36.jpg

注:当所使用的放大器的增益带宽乘积大于10MHz时,应采用更严格的高频旁路措施,此时应选用射频旁路电容,对于通用集成芯片,对旁路的要求不高,但也不能忽视,通常最好每4~5个器件加一套旁路电容。不论所用集成电路器件有多少,每个印刷板都要至少加一套旁路电容。

在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,配置原则如下:

电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

为每个集成电路芯片配置一个0.01uF的陶瓷电容器。如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。

对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

去耦电容的引线不能过长,特别是高频旁路电容不能带引线。

在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,配置原则如下:

电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

为每个集成电路芯片配置一个0.01uF的陶瓷电容器。如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。

对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

去耦电容的引线不能过长,特别是高频旁路电容不能带引线。在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,配置原则如下:

电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

为每个集成电路芯片配置一个0.01uF的陶瓷电容器。如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。

对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

去耦电容的引线不能过长,特别是高频旁路电容不能带引线。

壹芯微科技专注于“二,三极管、MOS(场效应管)、桥堆”研发、生产与销售,20年行业经验,拥有先进全自动化双轨封装生产线、高速检测设备等,研发技术、芯片源自台湾,专业生产流程管理及工程团队,保障所生产每一批物料质量稳定和更长久的使用寿命,实现高度自动化生产,大幅降低人工成本,促进更好的性价比优势!选择壹芯微,还可为客户提供参数选型替代,送样测试,技术支持,售后服务等,如需了解更多详情或最新报价,欢迎咨询官网在线客服!

手机号/微信:13534146615

QQ:2881579535

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号