收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » 基于LM358的PWM滤波实现数模转换电路介绍|壹芯微

基于LM358的PWM滤波实现数模转换电路介绍|壹芯微

返回列表来源:壹芯微 发布日期 2022-04-26 浏览:-

基于LM358的PWM滤波实现数模转换电路介绍|壹芯微

基于脉宽调制(PWM)波形的频谱理论分析,针对交流伺服电机实现速度闭环控制需要(±10)V模拟信号输入的要求,本文设计基于LM358芯片的PWM滤波的(±10)V模拟信号输出的电路。LM358内部包括有两个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式。

1.PWM滤波的理论分析

实际电路中典型的PWM波形

图1 实际电路中典型的PWM波形

PWM是一种周期一定而占空比可以调制的方波信号,图1中是一种在实际电路中经常遇到的典型PWM波形。该PWM的高低电平分别为VH和VL,理想的情况VL等于0,但实际一般不等于0。

本文假设PWM为理想情况,PWM的幅值为A,脉冲宽度为x(t),则脉冲宽度调制波可以表示为:

公式

式中:假设脉冲中心在kTs处,T0为未调制宽度,m为调制指数;Tk为第k个矩形脉冲的宽度。可以看出,脉冲宽度调制信号由x(t)加上一个直流成分以及相位调制波构成。当T0《Ts时,相位调制部分引起的信号交叠可以忽略,所以脉冲宽度调制信号可以直接通过滤波器进行解调,从而实现PWM滤波D/A的输出。

2.LM358特性

.内部频率补偿

.直流电压增益高(约100dB)

.单位增益频带宽(约1MHz)

.电源电压范围宽:单电源(3—30V)

.双电源(±1.5一±15V)

.压摆率(0.3V/us)

.低功耗电流,适合于电池供电·低输入偏流

.低输入失调电压和失调电流

.共模输入电压范围宽,包括接地

.差模输入电压范围宽,等于电源电压范围

.输出电压摆幅大(0至Vcc-1.5V)

LM358

3.电路设计

PWM滤波D/A转换器框图

图2 PWM滤波D/A转换器框图

根据前面分析可以设计出PWM滤波的信号处理方框图,如图2所示。由单片机输出PWM波,通过整形隔离,然后通过有源滤波器及驱动放大得到模拟信号的输出。

针对控制芯片输出的是0~5V的PWM信号,而一般交流伺服电机速度闭环控制需要外部提供(±10)V的模拟信号,所以在控制芯片和交流伺服控制卡之间要加一级D/A转换电路,其功能就是把0~5V的PWM信号变为(-10)~(+10)V的模拟信号。

电路中主要器件采用的是LM358,其内部包括2个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。设计中采用的是LM358双电源供电模式,使整个电路得以实现正负电压的输出。电路总体上可以分为4个部分,分别为隔离电路、三阶滤波电路、偏置电路和放大电路。为了确定关键电阻和电容的值以及更好的分析电路,文中计算出各电路的传递函数,在计算传递函数的时候,先不考虑各调零电阻和调增益的电阻,并且认为线性集成元件为理想状态,分别如下。

3.1隔离电路

隔离电路

图3 隔离电路

隔离电路如图3所示。由高速光藕隔离芯片6N137实现,将实际控制芯片输出的PWM信号转换为理想的0~5V的PWM信号,隔离的目的为了防止外围电路对单片机信号的干扰。

3.2滤波电路

滤波电路

图4 滤波电路

三阶滤波电路由一个二阶有源低通滤波器和一个阻容滤波器组成。如图4所示。

主要器件是运放芯片LM358(图中U2A)和电阻R3、R6、R7、R8、R9以及电容C2、C3、C5。电路中的二阶有源低通滤波器采用的是二阶压控电压源电路,其原理是一个由线性集成元件(LM358)构成的同相比例放大器,其他无源元件都接在线性集成元件(LM358)的同相输入端,同相放大器输出电压反馈到无源网络。整个滤波电路的功能是将PWM信号的谐波过滤出去,并将理想的0~5VPWM信号放大一倍,转换成0~10V的模拟信号。

其传递函数如下:

传递函数

式中:Af=1+R8/R7,a0=1

a1=R6C2+R3C2+R3C3(1-Af)+R9C5,

a2=R3R6C2C3+R6R9C2C5+R3R9C2C5+R3R9C3C5(1-Af)+R9C5,

a3=R3R6R9C2C3C5

本系统采用常用的二阶工程最佳参数作为设计系统的依据,选择阻尼系数ξ=1/√2,此时系统的幅频特性没有峰值出现,并且其截止频率就是它的固有频率fc=f0。实践证明,本系统在信号频率为21kHz左右时,滤波效果最佳。

在本系统中取增益Af=2。求解得到:R3=22kΩ,R7=24kΩ,R8=24kΩ,R6=7.5kΩ,R9=100Ω,C2=15nF,C3=10nF,C5=10nF。

3.3偏置电路

偏置电路

图5 偏置电路

偏置电路如图5所示,由运放芯片LM358(图中U2B)和电阻R11、R12、R14、R15组成,其原理是一个反相加法器,将0~10V模拟信号和基准电压源提供的-5V电压相加后,实现-5~+5V模拟信号的输出

其传递函数如下:

传递函数

所以取R15=R12=R11=10kΩ。

3.4放大电路

放大电路

图6 放大电路

放大电路由U34和R16、R17、R18组成,图图6所示。其原理是一个反相比例放大器,把输入的-5~+5V的模拟信号放大为-10~+10V的模拟信号。

放大电路中,要把在一级运放产生的系统相位滞后180°校正过来,并且放大2倍。所以仍采用反相比例放大器。在电路中U2、U3的关系为:

U2、U3的关系

所以取R16=10kΩ,R17本来应该选择20kΩ的电阻,但是由于在实际中反馈端还得加一个可变电阻,所以选择R17=15kΩ。

在实际调试电路的过程中,应该循序渐进一步步的调试,首先把PWM的占空比调整到0,在理想状态下,第2部分电路和第3部分电路应该分别输出为0和-5V,但是由于运算放大器的零偏、温漂和非线性以及外界的一些因素,这两部分电路输出不可能恰好是0和-5V,所以在U2A的放大器的基础上增加一个调零电阻R19和一个调增益电阻R20,在U2B的反相加法器的基础上增加一个调零电阻R21。调节调零电阻R19,使第2部分电路输出为0V,然后调整R21使第3部分输出为-5V。增加PWM的占空比到100%分别调整增益电阻R20、R22使得第2部分电路和第4部分电路的输出均为10V。

总结

本文详细介绍了基于LM358芯片的PWM滤波实现数模转换的电路,该电路具有良好稳定性,实现了正负模拟信号的输出,为交流伺服电机速度闭环控制提供了可靠的外部模拟信号。节省了大量D/A转换器芯片,降低了电子设备的成本,减少了体积。该电路已应用于实际工程,并取得了良好的预期结果,且设计方案简单易行,性价比高,只要适当改变电路部分电阻、电容的值,就可实现对不同基频信号滤波的功能,且达到最佳效果,此外,该电路也为模拟式速度闭环控制器提供了一个很好的外部电路参考依据。

深圳壹芯微科技,20年专业生产“二极管、三极管、场效应管、桥堆”等,专业生产管理团队对品质流程严格管控,超过4800家电路电器生产企业选用合作,价格低于同行(20%),更具性价比,提供选型替代,送样测试,数据手册,技术支持,售后FEA,如需了解更多详情或最新报价,欢迎咨询官网在线客服!

手机号/微信:13534146615

QQ:2881579535

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号