收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 行业资讯 » 「IRF3205」场效应MOS管驱动原理解析(图) - 壹芯微

「IRF3205」场效应MOS管驱动原理解析(图) - 壹芯微

返回列表来源:壹芯微 发布日期 2021-07-28 浏览:-

IRF3205」场效应MOS管驱动原理解析(图) - 壹芯微

型号:IRF3205(110A,55V)

封装:TO-220/TO-262/TO-263

品牌:壹芯微|类型:场效应管MOSFET

多种封装 尺寸不同 参数一致 免费样品 欢迎咨询


12N65,场效应管封装和电路符号


12N65,场效应管封装


下图为MOS驱动电路的电路图。驱动电路采用Totem输出结构设计,上拉驱动管为NMOS管N4、晶体管Q1和PMOS管P5。下拉驱动管为NMOS管N5。图中CL为负载电容,Cpar为B点的寄生电容。虚线框内的电路为自举升压电路。


12N65,场效应管驱动电路原理图


驱动电路的设计思想是利用自举升压结构将上拉驱动管N4的栅极(B点)电位抬升,使得UB>VDD+VTH ,则NMOS管N4工作在线性区,使得VDSN4大大减小,最终可以实现驱动输出高电平达到VDD。而在输出低电平时,下拉驱动管本身就工作在线性区,可以保证输出低电平位GND。因此无需增加自举电路也能达到设计要求。


考虑到此驱动电路应用于升压型DC-DC转换器的开关管驱动,负载电容CL很大,一般能达到几十皮法,还需要进一步增加输出电流能力,因此增加了晶体管 Q1作为上拉驱动管。这样在输入端由高电平变为低电平时,Q1导通,由N4、Q1同时提供电流,OUT端电位迅速上升,当OUT端电位上升到VDD-VBE时,Q1截止,N4继续提供电流对负载电容充电,直到OUT端电压达到VDD。


在OUT端为高电平期间,A点电位会由于电容Cboot上的电荷泄漏等原因而下降。这会使得B点电位下降,N4的导通性下降。同时由于同样的原因,OUT端电位也会有所下降,使输出高平不能保持在VDD。为了防止这种现象的出现,又增加了PMOS管P5作为上拉驱动管,用来补充OUT端CL的泄漏电荷,维持OUT端在整个导通周期内为高电平。


驱动电路上升沿分为了三个部分,分别对应三个上拉驱动管起主导作用的时期。1阶段为Q1、N4共同作用,输出电压迅速抬升,2阶段为N4起主导作,使输出电平达到VDD,3阶段为P5起主导作用,维持输出高电平为VDD。而且还可以缩短上升时间,下降时间满足工作频率在兆赫兹级以上的要求。


Cboot的最小值可以按照以下方法确定。在预充电周期内,电容Cboot上的电荷为VDDCboot 。

在A点的寄生电容(计为CA)上的电荷为VDDCA。因此在预充电周期内,A点的总电荷为Q_{A1}=V_{DD}C_{boot}+V_{DD}C_{A}

B点电位为GND,因此在B点的寄生电容Cpar上的电荷为0。


在自举升压周期,为了使OUT端电压达到VDD,B点电位最低为VB=VDD+Vthn。因此在B点的寄生电容Cpar上的电荷为 Q_{B}=(V_{DD}+V_{thn})Cpar

忽略MOS管P4源漏两端压降,此时 Cboot 上的电荷为 VthnCboot ,A点寄生电容CA的电荷为(VDD+Vthn)CA。A点的总电荷为 QA2=V_{thn}C_{BOOT}+(V_{DD}+V_{thn})C_{A}

同时根据电荷守恒又有:Q_{B}=Q_{A}-Q_{A2}


综合上面等式可得:C_{boot}=\frac{V_{DD}+V_{thn}}{v_{DD}-v_{thn}}Cpar+\frac{v_{thn}}{v_{DD}-v_{thn}}C_{A}=\frac{V_{B}}{v_{DD}-v_{thn}}Cpar+\frac{V_{thn}}{v_{DD}-v_{thn}}C_{A}


从上式中可以看出,Cboot随输入电压变小而变大,并且随B点电压VB变大而变大。而B点电压直接影响N4的导通电阻,也就影响驱动电路的上升时间。因此在实际设计时,Cboot的取值要大于上式的计算结果,这样可以提高B点电压,降低N4导通电阻,减小驱动电路的上升时间。


将上式重新整理后得:V_{B}=({V_{DD}-V_{thn})\frac{C_{boot}}{Cpar}-V_{thn}\frac{C_{A}}{Cpar}


从整理后可以看出在自举升压周期内,A、B两点的寄生电容使得B点电位降低。在实际设计时为了得到合适的B点电位,除了增加Cboot大小外,要尽量减小A、B两点的寄生电容。在设计时,预充电PMOS管P2的尺寸尽可能的取小,以减小寄生电容CA。而对于B点的寄生电容Cpar来说,主要是上拉驱动管N4的栅极寄生电容,MOS管P4、N3的源漏极寄生电容只占一小部分。我们在前面的分析中忽略了P4的源漏电压,因此设计时就要尽量的加大P4的宽长比,使其在自举升压周期内的源漏电压很小可以忽略。但是P4的尺寸以不能太大,要保证P4的源极寄生电容远远小于上拉驱动管N4的栅极寄生电容。



IRF3205」采购优质国产二/三极管Mosfet选壹芯微(专注领域 专业品质),国内知名功率半导体生产商,专业进口生产设备,芯片与技术源自台湾,完美替代进口品牌,页面右侧联系销售一线或工程师为您提供参数,选型,样品申请,规格书与技术支持,欢迎咨询



推荐阅读

【本文标签】:12N65 12N65参数 场效应管 MOS管

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号