收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » 固态电池的四大优势汇总

固态电池的四大优势汇总

返回列表来源:壹芯微 发布日期 2019-12-20 浏览:-

固态电池的四大优势汇总

优势之一:薄--体积小

实际上,体积能量密度对于电池来说是一个很重要的参数,如果就应用领域来说,要求从高到低是消费电子产品》家用电动汽车》电动公交车。

如果通俗地讲,就是体积能量密度高了,因此相同质量的电池才能做的体积更小。

电子产品中的可用空间往往很有限,很多产品(例手机、平板电脑)有近1/3左右的体积和质量已经被电池占据,而且在广大生产厂商和消费者希望对电池进一步提高容量(增加续航)和压缩体积(便携美观和便于设计)的要求下,高压实、体积能量密度最高的钴酸锂(LCO)电池依然是当仁不让的主流产品。

传统锂离子电池中,需要使用隔膜和电解液,它们加起来占据了电池中近40%的体积和25%的质量。

而如果把它们用固态电解质取代(主要有有机和无机陶瓷材料两个体系),正负极之间的距离(传统上由隔膜电解液填充,现在由固态电解质填充)可以缩短到甚至只有几到十几个微米,这样电池的厚度就能大大地降低--因此全固态电池技术是电池小型化,薄膜化的必经之路。

不仅如此,很多经过物理/化学气相沉积(PVD/CVD)制备的全固态电池,其整体厚度可能只有几十个微米,因此就可以制成非常小的电源器件,整合到MEMS(微机电系统)领域中。

能够制成体积非常小的电池也是全固态电池技术的一大特色,这可以方便电池适应各种新型小尺寸智能电子设备的应用,而在这一点上传统的锂离子电池的技术是很难达到的。

(现在锂离子电池各组分的(a)体积占比和(b)质量占比)

目前许多纳米材料实用的一大关键障碍就在于比表面积大,体积密度过低,导致如果基于这些材料制成产品,往往相同质量下占据体积过大,即体积能量密度偏低,完全无法满足一般工业品的要求。

所以现在的纳米(电池)材料科研中往往选择了不报道这方面的参数,原因不难理解。

优势之二:柔性化的前景

全固态电池可以经过进一步的优化,变成柔性电池,从而带来更多的功能和体验。

实际上,即使是脆性的陶瓷材料,在厚度薄到毫米级以下后经常是可以弯曲的,材料会变得有柔性。

相应的,全固态电池在轻薄化后柔性程度也会有明显的提高,通过使用适当的封装材料(不能是钢性的外壳),制成的电池可以经受几百到几千次的弯曲而保证性能基本不衰减。

实际上,以各种可穿戴设备为代表的柔性电子器件是下一代电子产品发展的重要方向,而这就要求该产品中的元件同样需要具有柔性,因此柔性全固态电池是科研与工业界中,非常有前景的明日之星。

不仅如此,功能化的全固态电池潜力远不只以上的柔性电池,经过电池材料结构优化可以制成透明电池,或者是拉伸幅度可达300%的可拉伸电池,或是可以和光伏器件集成化的发电-存储一体化器件等等--全固态电池所意味的功能上的创新应用前景还有很多,在这方面科研人员与工程师们的想像力会给我们带来越来越多的惊喜。

优势之三:更安全

作为一种能量存储器件,实际上所有电池在热力学实质上都不可能是绝对安全的。

但是电池实际应用中的决定其真正安全性的因素是多方面的,影响因素包括电池的电极材料特性、电解液的性质,以及电子产品中的电池管理系统等。

目前一般商用的锂离子的安全性是大家关心的重点,在这里用“不够理想”来评价现在电池的安全性,应该是一个比较合适的评价。

优势之四:轻--能量密度高

使用了全固态电解质后,锂离子电池的适用材料体系也会发生改变,其中核心的一点就是可以不必使用嵌锂的石墨负极,而是直接使用金属锂来做负极,这样可以明显减轻负极材料的用量,使得整个电池的能量密度有明显提高。

此外,许多新型高性能电极材料,可能之前与现有的电解液体系的兼容性并不好,但是在使用全固态电解质后该问题可以得到一定的缓解。

综合考虑到以上两大因素,全固态电池相比于一般锂离子电池,能量密度可以有一个较大幅度的提升:现在许多实验室中,都已经可以小规模批量试制出能量密度为300-400Wh/kg的全固态电池了(一般锂离子电池是100-220Wh/kg)。

从能量密度的数据上看,或许全固态电池真的有希望让我们的生活从“一天一充”升级到“两天一充”。

固态电池领域有不同的技术路线,固体电解质可大致分为三类:无机电解质、固态聚合物电解质(SPE,SolidPolymerElectrolyte)、复合电解质。目前较多业者投入研究的材料包括固态聚合物、硫化物(Sulfide)、氧化物(Oxide)、薄膜(ThinFilm)等。像是戴森、苹果各自收购的固态电池厂Sakti3和InfinitePowerSolutions,皆以薄膜为主,但制程复杂,量产难度高,先前市场传出戴森、苹果有意放弃,故现阶段发展状况不太明朗,而丰田、松下(Panasonic)、三星、宝马、宁德时代投入硫化物电解质,辉能、索尼则是聚焦在氧化物。

苹果从2012年就开始积极布局固态电池及充电技术的专利,2013年收购了InfinitePowerSolutions。近两三年汽车厂布局固态电池的消息大幅浮上台面,像是丰田对外宣示将在2022年对外销售搭载固态电池的电动车。另外,大众汽车(Volkswagen)投资了由《麻省理工科技评论》TR35青年创业家JagdeepSingh参与创立的固态电池初创公司QuantumScape,去年6月加码投资,并取得QuantumScape一席董事,预计在2025年建立固态锂电池产线。

而过去的电池大国日本,陆续舍弃掉锂电池后,已经将研究重点转向固态电池,日本科学技术振兴机构(JST)、日本新能源产业技术开发机构(NEDO)都积极推动,这些动态让外界开始关注这项技术。

目前,包括韩国三星、日本丰田和我国宁德时代在内的众多电池和汽车厂商,都加大了固态电池研发投入,已有部分电池进入装车测试阶段。尽管前景可期,但由于技术和工艺上的种种问题,发展固态电池的道路绝非一帆风顺。

首先,高效的电解质材料体系缺乏。目前固态电池材料发展很快,但综合应用较为欠缺。

作为固态电池的核心材料,目前在固体锂离子导体的单一指标上已有所突破,但综合性能尚不能满足大规模储能需求。现今固态电池采用的固态电解质普遍存在性能短板,距离高性能锂离子电池系统的要求仍有不小的差距。

1、固态电解质和电极的界面处理也是固态电池目前面临的一大难题。

在固体电解质中锂离子传输阻抗很大,与电极接触的刚性界面接触面积小,在充放电过程中电解质体积的变化容易破坏界面的稳定。

2、在固态锂电池中,除了电解质和电极之间的界面,电极内部还存在复杂的多级界面,电化学以及形变等因素都会导致接触失效影响电池性能。

再次,长期使用时稳定性不理想也是长寿命储能固态电池发展的瓶颈。固态电池在服役过程中结构与界面会随时间发生退化,但退化对电池综合性能的影响机制尚不明确,难以实现长效应用。

所以,构建高性能固态电池需要从两方面入手,一是构建高性能的固态电解质,二是提高界面的相容性和稳定性。

从某种意义上讲,汽车的演变历史就是电池的进化过程。若论起源,电动汽车也已经有了180多年的历史,出现时间与燃油车不相上下。可铅酸电池、镍氢电池均未使电动汽车的地位有所突破。直至磷酸铁锂电池、三元锂电池的升级才使得部分消费者逐步接受电动汽车。

若固态电池商用化,电动汽车将加速取代内燃机车的步伐。谁率先掌握这项技术,也将在未来竞争格局中握有更大的话语权。

壹芯微科技针对二三极管,MOS管作出了良好的性能测试,应用各大领域,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号