收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » 电力晶体管基础知识图解

电力晶体管基础知识图解

返回列表来源:壹芯微 发布日期 2020-01-14 浏览:-

电力晶体管基础知识图解

电力晶体管,是一种耐高电压、大电流的双极结型晶体管,所以有时也称为Power BJT;但其驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。

GTR是一种电流控制的双极双结大功率、高反压电力电子器件,具有自关断能力,产生于上个世纪70年代,其额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。它既具备晶体管饱和压降低、开关时间短和安全工作区宽等固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。GTR的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。在开关电源和UPS内,GTR正逐步被功率MOSFET和IGBT所代替。它的符号如图1,和普通的NPN晶体管一样。

电力晶体管

电力晶体管的结构

电力晶体管(Giant Transistor)简称GTR又称BJT(Bipolar Junction Transistor),GTR和BJT这两个名称是等效的,结构和工作原理都和小功率晶体管非常相似。GTR由三层半导体、两个PN结组成。和小功率三极管一样,有PNP和NPN两种类型,GTR通常多用NPN结构。

电力晶体管工作原理

在电力电子技术中,GTR主要工作在开关状态。GTR通常工作在正偏(Ib>0)时大电流导通;反偏(Ib<0=时处于截止状态。因此,给GTR的基极施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。

电力晶体管特点

l 输出电压

可以采用脉宽调制方式,故输出电压为幅值等于直流电压的强脉冲序列。

2 载波频率

由于电力晶体管的开通和关断时间较长,故允许的载波频率较低,大部分变频器的上限载波频率约为1.2~1.5kHz左右。

3 电流波形

因为载波频率较低,故电流的高次谐波成分较大。这些高次谐波电流将在硅钢片中形成涡流,并使硅钢片相互间因产生电磁力而振动,并产生噪音。又因为载波频率处于人耳对声音较为敏感的区域,故电动机的电磁噪音较强。

4 输出转矩

因为电流中高次谐波的成分较大,故在50Hz时,电动机轴上的输出转矩与工频运行时相比,略有减小。

电力晶体管的基本特性

(1)静态特性

共发射极接法时可分为三个工作区:

① 截止区。在截止区内,iB≤0,uBE≤0,uBC<0,集电极只有漏电流流过。

② 放大区。iB >0,uBE>0,uBC<0,iC =βiB。

③ 饱和区。iB >Ics/β,uBE>0,uBC>0,iCS是集电极饱和电流,其值由外电路决定。

结论:两个PN结都为正向偏置是饱和的特征。饱和时,集电极、发射极间的管压降uCE很小,相当于开关接通,这时尽管电流很大,但损耗并不大。GTR刚进入饱和时为临界饱和,如iB继续增加,则为过饱和,用作开关时,应工作在深度饱和状态,这有利于降低uCE和减小导通时的损耗。

(2)动态特性

电力晶体管

图4-9 GTR开关特性

GTR在关断时漏电流很小,导通时饱和压降很小。因此,GTR在导通和关断状态下损耗都很小,但在关断和导通的转换过程中,电流和电压都较大,所以开关过程中损耗也较大。当开关频率较高时,开关损耗是总损耗的主要部分。因此,缩短开通和关断时间对降低损耗、提高效率和提高运行可靠性很有意义。

电力晶体管的主要参数

(1)最高工作电压

(2)集电极最大允许电流ICM

(3)集电极最大允许耗散功率PCM

(4)最高工作结温TJM

二次击穿和安全工作区

(1)二次击穿

二次击穿是影响GTR安全可靠工作的一个重要因素。当GTR的集电极电压升高至击穿电压时,集电极电流迅速增大,这种首先出现的击穿是雪崩击穿,被称为一次击穿。出现一次击穿后,只要Ic不超过与最大运行耗散功率相对应的限度,GTR一般不会损坏,工作特性也不会有什么变化。但是实际应用中常常发现一次击穿发生时如不有效地限制电流,Ic增大到某个临界点时会突然急剧上升,同时伴随着电压的突然下降,这种现象称为二次击穿。防止二次击穿的办法是:①应使实际使用的工作电压比反向击穿电压低得多。②必须有电压电流缓冲保护措施。

(2)安全工作区

以直流极限参数ICM、PCM、UCEM构成的工作区为一次击穿工作区,以USB (二次击穿电压)与ISB (二次击穿电流)组成的PSB (二次击穿功率)是一个不等功率曲线。为了防止二次击穿,要选用足够大功率的GTR,实际使用的最高电压通常比GTR的极限电压低很多。

电力晶体管

图4-10 GTR安全工作区

电力晶体管

图4-11 GTR基极驱动电流波形

驱动与保护

1.GTR基极驱动电路

(1)对基极驱动电路的要求

①实现主电路与控制电路间的电隔离。

②导通时,基极正向驱动电流应有足够陡的前沿,并有一定幅度的强制电流,以加速开通过程,减小开通损耗。

③GTR导通期,基极电流都应使GTR处在临界饱和状态,这样既可降低导通饱和压降,又可缩短关断时间。

④在使GTR关断时,应向基极提供足够大的反向基极电流,以加快关断速度,减小关断损耗。

⑤应有较强的抗干扰能力,并有一定的保护功能。

(2)基极驱动电路

电力晶体管

图4-12 实用的GTR驱动电路

2.集成化驱动

集成化驱动电路克服了一般电路元件多、电路复杂、稳定性差和使用不便的缺点,还增加了保护功能。

3.GTR的保护电路

开关频率较高,采用快熔保护是无效的。一般采用缓冲电路。主要有RC缓冲电路、充放电型R、C、VD缓冲电路和阻止放电型R、C、VD缓冲电路三种形式,如图4-13所示。

电力晶体管

图4-13 GTR的缓冲电路

图4-13a所示RC缓冲电路只适用于小容量的GTR(电流10 A以下)。图4-13b所示充放电型R、C、VD缓冲电路用于大容量的GTR。图4-13c所示阻止放电型R、C、VD缓冲电路,较常用于大容量GTR和高频开关电路,其最大优点是缓冲产生的损耗小。

电力晶体管电路分析

电力晶体管

图6-21所示为三相桥式PWM逆变电路,功率开关器件为GTR,负载为电感性。从电路结构上看,三相桥式PWM变频电路只能选用双极性控制方式,其工作原理如下:

三相调制信号urU、urV和urW为相位依次相差120°的正弦波,而三相载波信号是公用一个正负方向变化的三角形波uc,如图6-23所示。U、V和W相自关断开关器件的控制方法相同,现以U相为例:在urU>uc的各区间,给上桥臂电力晶体管V1以导通驱动信号,而给下桥臂V4以关断信号,于是U相输出电压相对直流电源Ud中性点N‘为uUN' =Ud/2。在urU<uc的各区间,给V1以关断信号,V4为导通信号,输出电压uUN' =-Ud/2。电路中VD1~VD6二极管是为电感性负载换流过程提供续流回路,其它两相的控制原理与U相相同。三相桥式PWM变频电路的三相输出的PWM波形分别为uUN’、uVN‘和uWN’。

壹芯微科技针对二三极管,MOS管作出了良好的性能测试,应用各大领域,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍

推荐阅读

【本文标签】:

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1高效能源转换:正激和反激开关电源的设计原理揭秘

2突破性的仪表放大器抑制方法:优化信号处理效率

3优化MOS管开关性能:应对米勒效应的最新技术与方法

4优化电路设计:7800系列稳压器的最佳实践指南

5三端稳压管内部结构解析:探秘稳压管电路的构成与工作原理

6预防转换器启动时的输出涌流:重要性与应对方法

7实用指南:步步详解如何搭建自己的隔离式半桥栅极驱动器系统

8精益求精:优化简单电流监测电路的性能与稳定性

9高效应对EMC挑战:电源PCB设计的5个关键步骤

10全桥驱动螺线管技术:提高关断速度的实用方法

全国服务热线13534146615

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号