

STD7NK30Z, STF7NK30Z STP7NK30Z

N-channel, 300 V, 0.80 Ω, 5 A TO-220, TO-220FP, DPAK Zener-protected SuperMESH™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D	Pw
STF7NK30Z	300 V	< 0.9 Ω	5 A	20 W
STP7NK30Z	300 V	< 0.9 Ω	5 A	50 W
STD7NK30Z	300 V	< 0.9 Ω	5 A	50 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitances
- Very good manufacturing repeatability

Applications

■ Switching application

Description

The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage Power MOSFETs including revolutionary MDmesh™ products

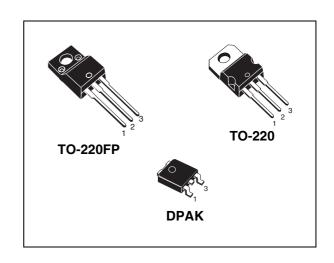


Figure 1. Internal schematic diagram

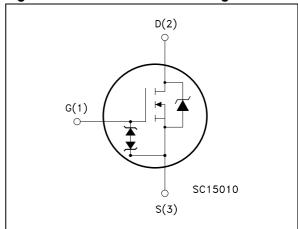


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD7NK30Z	D7NK30Z	DPAK	Tape and reel
STF7NK30Z	F7NK30Z	TO-220FP	Tube
STP7NK30Z	P7NK30Z	TO-220	Tube

Electrical ratings STx7NK30Z

1 Electrical ratings

Table 2. Absolute maximum ratings

Cumbal	Dovernator	Valu	е	l locia
Symbol	Parameter	TO-220, DPAK	TO-220FP	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	300	1	V
V _{GS}	Gate- source voltage	± 30)	V
I _D	Drain current (continuous) at T _C = 25 °C	5	5 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	3.2	3.2 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	20	20 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	50	20	W
	Derating factor	0.4	0.16	W/°C
V _{ESD(G-S)}	Gate source ESD(HBM-C=100 pF, R=1.5 k Ω)	2800)	V
dv/dt (3)	Peak diode recovery voltage slope	4.5		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C)		2500	V
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to	150	V

^{1.} Limited only by maximum temperature allowed

Table 3. Absolute maximum ratings

Symbol	Parameter	Valu	Unit	
Symbol	raiametei	TO-220, DPAK	TO-220FP	Oilit
Rthj-case	Thermal resistance junction-case Max	2.50 6.25		٧
Rthj-amb	Thermal resistance junction-ambient Max	62.5	5	٧
T _I	Maximum lead temperature for soldering purpose	300		Α

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	5	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	130	mJ

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq$ 5.7 A, di/dt \leq 200 A/ μ s, VDD =80% $V_{(BR)DSS}$.

2 Electrical characteristics

(Tcase =25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D =1 mA, V _{GS} = 0	300			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} =max rating V _{DS} =max rating @125 °C			1 50	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$		0.80	0.90	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 V_{,} I_{D} = 2.5 A$		2.5		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{MHz,}$ $V_{GS} = 0$		380 74 15		pF pF pF
C _{oss eq.} (2)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 240 V		30		pF
$egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 240 \text{ V}, I_D = 7 \text{ A},$ $V_{GS} = 10 \text{ V}$		13 4.5 7.6	17	nC nC nC

^{1.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Electrical characteristics STx7NK30Z

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\begin{matrix} t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \end{matrix}$	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 150 \text{ V}, I_D = 3.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$		11 25 20 10		ns ns ns ns
t _{r(Voff)} t _f t _c	Off-voltage rise time Fall time Cross-over time	$V_{DD} = 240 \text{ V}, I_D = 7 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$		8.5 8.5 20		ns ns ns

Table 8. Source Drain Diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				5 20	A A
V _{SD} ⁽²⁾	Forward On voltage	I _{SD} = 5 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 40 \text{ V}, T_j = 150 ^{\circ}\text{C}$		154 716 9.3		ns nC A

^{1.} Pulse width limited by safe operating area.

Table 9. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO} ⁽¹⁾	Gate-source breakdown voltage	lgs=± 1mA (open drain)	30			٧

^{1.} The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components

^{2.} Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220 Figure 3. Thermal impedance for TO-220

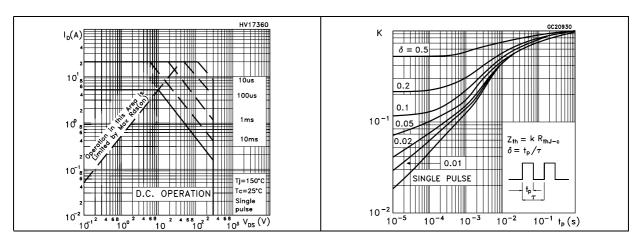


Figure 4. Safe operating area for TO-220FP Figure 5. Thermal impedance for TO-220FP

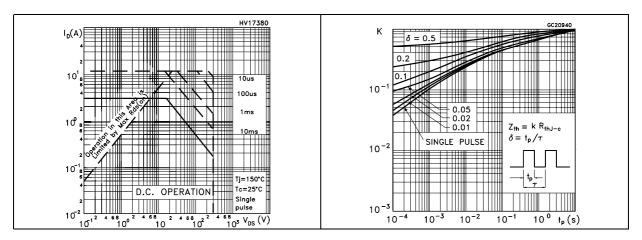
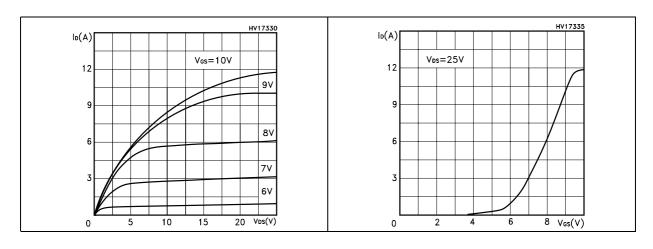



Figure 6. Output characteristics

Figure 7. Transfer characteristics

