

FDB8453LZ N-Channel PowerTrench[®] MOSFET 40V, 50A, 7.0m Ω

Features

- Max $r_{DS(on)} = 7.0 m\Omega$ at $V_{GS} = 10V$, $I_D = 17.6A$
- Max $r_{DS(on)} = 9.0 m\Omega$ at $V_{GS} = 4.5 V$, $I_D = 14.9 A$
- HBM ESD protection level of 7.6kV typical (note 4)
- Fast Switching
- RoHS Compliant

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

Applications

- Inverter
- Power Supplies

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			40	V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous (Package limited)	$T_C = 25^{\circ}C$		50		
	-Continuous (Silicon limited)	$T_C = 25^{\circ}C$		74	_	
	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	16.1	A	
	-Pulsed			100		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	253	mJ	
P _D	Power Dissipation	T _C = 25°C		66		
	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1a)	3.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		1.88	°C 444
R _{0JA}	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/vv

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8453LZ	FDB8453LZ	TO-263AB	330mm	24mm	800 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	40			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		36		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32V, V_{GS} = 0V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±10	μA
On Chara	octeristics			-		-
Vcc(th)	Gate to Source Threshold Voltage	$V_{CC} = V_{DC}$ $I_{D} = 250 \mu A$	1.0	1.8	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{I}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C		-6.0		mV/°C
		V _{GS} = 10V, I _D = 17.6A		6.3	7.0	
		$V_{GS} = 4.5V, I_D = 14.9A$		7.3	9.0	-
^r DS(on)	Static Drain to Source On Resistance	V _{GS} = 10V, I _D = 17.6A, T _{.1} = 125°C		9.9	11	·mΩ
9 _{ES}	Forward Transconductance	V _{DS} = 5V, I _D = 17.6A		84		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 20V$, $V_{CS} = 0V$		2665	3545	pF
C _{oss}	Output Capacitance	-f = 1MHz		325	430	pF
C _{rss}	Reverse Transfer Capacitance			200	295	pF
R _g	Gate Resistance	f = 1MHz		2.2		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			11	20	ns
t _r	Rise Time	$V_{DD} = 20V, I_D = 17.6A,$		6	13	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		37	60	ns
t _f	Fall Time			5	11	ns
Q _g	Total Gate Charge	$V_{GS} = 0V$ to 10V		47	66	nC
Q _g	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 20V,$		25	35	nC
Q _{gs}	Gate to Source Charge	I _D = 17.6A		7		nC
Q _{gd}	Gate to Drain "Miller" Charge			9		nC
Drain-So	urce Diode Characteristics					
Ven	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 2.6A$ (Note 2)		0.7	1.2	V
50		$V_{GS} = 0V, I_S = 17.6A$ (Note 2)		0.8	1.3	
t _{rr}	Reverse Recovery Time	I _F = 17.6A, di/dt = 100A/μs		24	38	ns
Q.,	Reverse Recovery Charge	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		15	27	l nC

Notes: 1: $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a. 40°C/W when mounted on a 1 $\mbox{in}^2\,\mbox{pad}$ of 2 oz copper

b. 62.5°C/W when mounted on a minimum pad.

Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.
Starting T_J = 25°C, L = 3mH, I_{AS} = 13A, V_{DD} = 40V, V_{GS} = 10V.
The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

3