

FDP5645/FDB5645

60V N-Channel PowerTrench® MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\text{DS}(\text{ON})}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 80 A, 60 V. $R_{DS(ON)} = 0.0095 \ \Omega \ @ \ V_{GS} = 10 \ V$ $R_{DS(ON)} = 0.011 \ \Omega \ @ \ V_{GS} = 6 \ V.$
- Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- High performance trench technology for extremely low R_{DS/(ON)}.
- 175°C maximum junction temperature rating.

S TO-263AB FDB Series

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter	FDP5645 FDB5645	Units
V _{DSS}	Drain-Source Voltage	60	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Maximum Drain Current – Continuous (note 3)	80	Α
	– Pulsed	300	
P _D	Total Power Dissipation @ T _C = 25°C	125	W
	Derate above 25°C	0.83	W/°C
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-65 to +175	°C
TL	Maximum lead termperature for soldering purposes, 1/8" from case for 5 seconds	+275	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

Package Marking and Ordering Information

	J			
Device Marking	Device	Reel Size	Tape width	Quantity
FDB5645	FDB5645	13"	24mm	800 units
FDP5645	FDP5645	note 2		

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	ource Avalanche Ratings (Note 1	1)		I	I	ı
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 40 \text{ V}, \qquad I_D = 80 \text{ A}$			800	mJ
l _{AR}	Maximum Drain-Source Avalanche Current				80	Α
Off Char	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			V
<u>ΔBV DSS</u> ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		64		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	racteristics (Note 1)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{CS}, I_D = 250 \mu\text{A}$	2		4	V
ΔV GS(th) $\Delta T_{ m J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C		-7.8		mV/°C
$R_{DS(on)}$	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 40 \text{ A}$ $V_{GS} = 10 \text{ V}, \qquad I_D = 40 \text{ A}, \qquad T_J = 125 ^{\circ}\text{C}$ $V_{GS} = 6 \text{ V}, \qquad I_D = 38 \text{ A}$		8 13 9	9.5 18 11	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	60			Α
g FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, \qquad I_{D} = 40 \text{ A}$		88		S
Dvnamio	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 30 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		4468		pF
Coss	Output Capacitance	f = 1.0 MHz		810		pF
C _{rss}	Reverse Transfer Capacitance	7		198		pF
Switchin	ng Characteristics (Note 2)					•
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 \text{ V}, \qquad I_D = 1 \text{ A},$		21	30	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		13	20	ns
t _{d(off)}	Turn-Off Delay Time			77	90	ns
t _f	Turn–Off Fall Time			42	50	ns
$\overline{Q_g}$	Total Gate Charge	$V_{DS} = 30 \text{ V}, \qquad I_D = 80 \text{ A}, \\ V_{GS} = 10 \text{ V}$		76	107	nC
Q _{gs}	Gate-Source Charge			18		nC
Q _{gd}	Gate-Drain Charge			21		nC
Drain-Se	ource Diode Characteristics a	and Maximum Ratings		•	•	
ls	Maximum Continuous Drain–Source				80	Α
ls s	Maximum Pulsed Drain-Source Diod			Ì	300	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 40 \text{ A}$		0.9	1.3	V

Notes

- 1. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%
- 2. TO-220 package is supplied in tube / rail @ 45 pieces per rail.
- 3. Calculated continuous current based on maximum allowable junction temperature. Actual maximum continuous current limited by package constraints to 75A

Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation withTemperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.